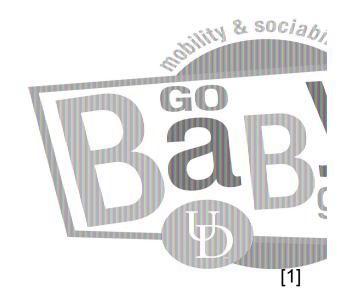


Steering Wheel Not Included

Project Sponsor: W.L. Gore and Associates


Ernes Distajo
Abdullah Alajmi
Abdulrahman Almutairi
Mohammad Aljuaidi
Samuel Williams

Project Description

- Created in 2012 at the University of Delaware
- Developed a set of DIY cars
- Enabling young children to move and interact with their peers

Project Goal:

 Design and build a new version of the GBG retrofits for children that have limited mobility of their arms and/or legs

Background

Why was GoBabyGo created?

How is Go Baby Go changing?

What did our team hope for?

Figure 1: Previous GBG Solutions [1]

Customer Requirements

Table 1: Customer Requirements

Customer Requirements	percentage
Cost	11.59%
Safety	14.49%
Quality	13.04%
Transportable	10.14%
Unique Solution	11.59%
Longlife Time	8.70%
Material accessibility	11.59%
Easy to assemble	10.14%
Control System	8.70%
Total:	100.00%

Engineering Requirements

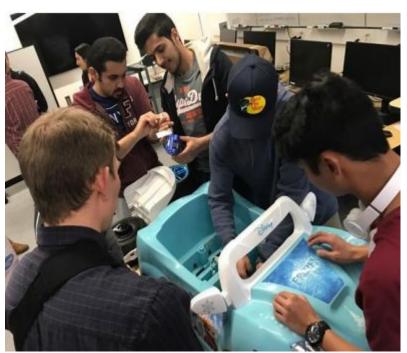


Figure 2: GBG Build

Table 2: Engineering Requirements with Targets and Tolerances

Engineering Requirements	Target	Tolerance
Material Cost	\$350	< \$400
# of Securements	2	≥ 1
# of Supports	2	≥1
Weight of Car	60 lbs.	< 100 lbs.
Material Access	Local Stores	Shipping < 3 weeks
Assembly Time	2.5 hrs.	< 4 hrs.
Significant Material Lifetime	3 years	≥2 years
Adaptability	4	≥ 3
Adjustable Speed	Starting speed of 1 mph	< 2 mph
Unique Solution	Unique from past GBG solutions	Unique

Design

Design Aspects

- Steering System
- Comfortability
- Adjustability
- Safe and Secure Operation

Design Solutions

- Arduino Controlled Button System
- Steering Buttons Closer To The Operator's Chest
- Detachable and Movable Button
- 4 Point Harness Seat Belt

Figure 3: Disassembling Car

Fall 2016 Proposed Design

- Two Button Steering
 - Controlling Back Motors
- Movable Armrests
- 4-point Harness
- PVC/Pool Noodle Structure
- Distance Sensors
 - o Kill Switch

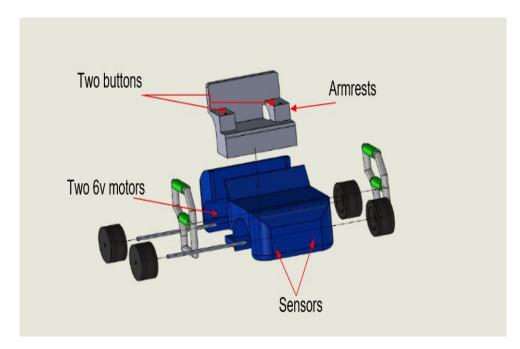


Figure 4: Proposed Design CAD Assembly Drawing

Spring 2017 Final Design Solution

- 1. Main Motor Button
- 2. Headboard Support
- 3. Static Armrest
- 4. Closed Frame
- 5. Steering Motor

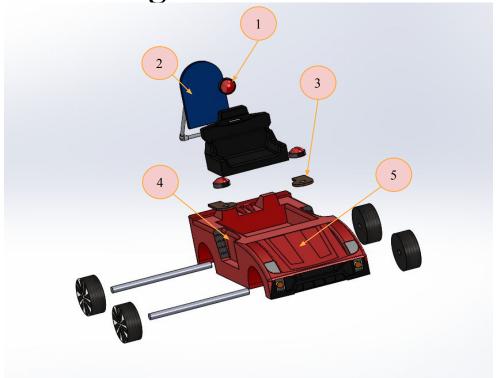


Figure 5: Final Design CAD Assembly Drawing

Testing Final Solution

Total Cost

Figure 6: Final Design

Table 3: Bill of Materials

Part Name	Cost [USD]	
Power Wheels Car	159.99	
Push Button x 3	50.85	
Ultimate Starter Kit	48.99	
Primary Wire x 3	15.57	
Arduino Motor Shield	24.97	
Kickboard	5.00	
Male and Female Connectors	5.98	
Development Board	7.86	
PVC Pipes x 2	3.28	
PVC Elbow x 2	1.96	
Total	\$324.45	

Manufacturing

- Armrests
 - Plywood Board
 - Attached Directly to Car
- 4-Point Seat Harness
 - Attached to Seat
- Headboard
 - Secured with PVC
- Electrical Circuit Layout

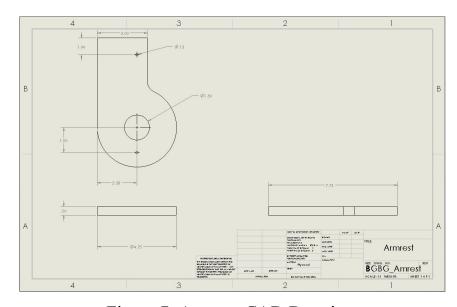


Figure 7: Armrest CAD Drawing

Electrical Layout

- Arduino Motor Shield
- Motor Driver
- Steering Motor

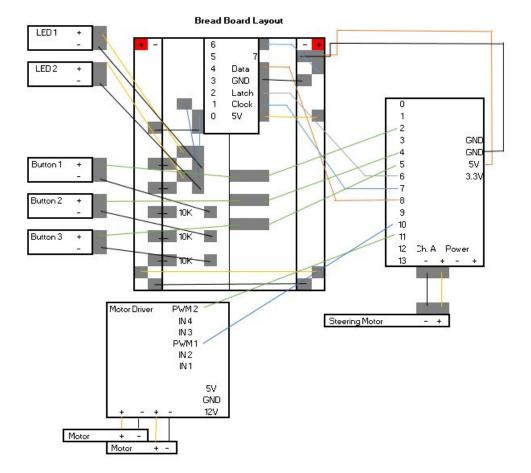


Figure 8: Circuit Layout

Testing Engineering Requirements

Table 4: Tested E.R.'s

E.R.'s	Target	Tolerance	Actual
Cost of Final Product	\$350	< \$400	\$325
Securements	2	≥ 1	4-Point Harness & Headboard
Supports	2	≥ 1	Seat & Armrests
Weight of Car	60 lbs	< 100 lbs	37. lbs
Material Access	Local	Online: < 3 Weeks	Home Depot & Amazon.com
Assembly Time	2.5 hrs	< 4 hrs	2 hrs for Circuit & 3 hrs for Car
Adaptability	4	≥ 3	3rd Button, Steering, & Harness
Material Lifetime	3 years	≥ 2 years	All Components
Adjustable Speed	1 mph	< 2 mph	Arduino Code
Unique Solution	Unique from Past GBG Solutions		

Conclusion

- Did We Meet all Requirements?
 - Assembly Time
- Contributions to Success
 - Communication
 - Research
 - Testing
- Areas to Improve
 - Physical Adjustable Speed
 - Smaller 3rd Button
 - Easier Overall Design to Assemble
- What We Liked About the GoBabyGo Project
 - Opportunity to Help (Donated)

Thank You

Sarah Oman - Instructor and Client

NAU Mechanical Engineering Department

• W. L Gore and Associates - Sponsor

Questions?

References

[1] "UD Gobabygo!". UD GoBabyGo!. N.p., 2017. Web. 26 Apr. 2017.

[2] https://www.cefns.nau.edu/capstone/projects/ME/2017/GoBabyGoA/index.html